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Isotropic-nematic phase equilibria in the Onsager theory of hard rods with length polydispersity

Alessandro Speranza and Peter Sollich*
Department of Mathematics, King’s College London, Strand, London WC2R 2LS, United Kingdom

~Received 19 December 2002; published 13 June 2003!

We analyze the effect of a continuous spread of particle lengths on the phase behavior of rodlike particles,
using the Onsager theory of hard rods. Our aim is to establish whether ‘‘unusual’’ effects such as isotropic-
nematic-nematic (I -N-N) phase separation can occur even for length distributions with a single peak. We focus
on the onset ofI -N coexistence. For a log-normal distribution, we find that a finite upper cutoff on rod lengths
is required to make this problem well posed. The cloud curve, which tracks the density at the onset ofI -N
coexistence as a function of the width of the length distribution, exhibits a kink; this demonstrates that the
phase diagram must contain a three-phaseI -N-N region. Theoretical analysis shows that in the limit of large
cutoff, the cloud point density actually converges to zero, so that phase separation results at any nonzero
density; this conclusion applies to all length distributions with fatter-than-exponentail tails. Finally, we con-
sider the case of a Schulz distribution, with its exponential tail. Surprisingly, even here the long rods~and
hence the cutoff! can dominate the phase behavior, and a kink in the cloud curve andI -N-N coexistence again
result. Theory establishes that there is a nonzero threshold for the width of the length distribution above which
these long-rod effects occur, and shows that the cloud and shadow curves approach nonzero limits for a large
cutoff, both in good agreement with the numerical results.
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I. INTRODUCTION

Rodlike particles such as tobacco mosaic virus in dil
suspension are known to exhibit a phase transition with
creasing density between an isotropic phase~I! with no ori-
entational or translational order and a nematic phase~N!
where the rods point, on an average, along a preferred d
tion @1–5#. The main theoretical approach formulated to p
dict this phenomenon is the Onsager theory of hard rods@6#.
Onsager assumed that the only interaction between the s
particles is of hard core type. The particles are modeled
perfectly rigid, long, thin rods; nonrigidity as well as po
sible long-range attractive potentials are neglected. Cruci
Onsager showed that the virial expansion truncated after
first nontrivial contribution becomes exact in the limit
long, thin rods~the ‘‘Onsager limit’’!, i.e., for D/L0→0,
whereD is the diameter andL0 the length of the rods. The
free energy then assumes a very simple form, because
second virial coefficient is just the excluded volume of tw
rods. The Onsager limit does however constrain the theor
low densities of the orderr;O(1/DL0

2), and phases such a
smectic phases that occur at higher density cannot be
dicted.

In order to express the distribution of the nonconserv
rod orientations, Onsager introduced the probabilityP(V) of
finding a rod pointing along the directionV. Minimization
of the free energy with respect toP(V) results in a self-
consistency equation forP(V). Solving this in principle re-
duces the free energy to a function of densityr only, so that
phase coexistences can be found by a standard double
gent construction. In order to avoid the complexity of t
numerical solution@7,8# of the self-consistency equation
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Onsager used a simple one-parameter variational trial f
for P(V). Using this method Onsager@6# and, two years
later Isihara@9#, were able to estimate the density at whi
the I -N phase transition occurs for different particle shap
A similar approach was used by Odijk@10#, with a Gaussian
trial function for P(V). However, the numerically exact so
lution had by then already been obtained by Kayser a
Raveche´ @11#. An alternative method, based on an expans
of the angular part of the excluded volume in terms of Le
endre polynomials@11#, was used by Lekkerkerkeret al.
@12#. All of these approaches gave similar results for t
properties of the coexisting isotropic and nematic phases

While being able to solve explicitly only the monodis
perse case, Onsager@6# already outlined the possible exten
sion of the theory topolydispersesystems, i.e., to mixtures
of rods of different lengths and/or different diameters. Po
dispersity has indeed been recognized as an important fea
affecting experimental results@13,14#, and some attempts
have been made to include it in theoretical treatments
generic prediction is the pronounced broadening of the co
istence region with increasing polydispersity@15–18#, which
is also observed experimentally@14#. A second generic effec
of polydispersity is fractionation, i.e., the presence of p
ticles of different sizes in the coexisting phases; for rodl
particles, already Onsager@6# had predicted that the nemat
phase would be enriched in the longer rods. Polydisper
can also result in more drastic and qualitative changes to
phase behavior, however. In particular, in systems w
length polydispersity coexistence between two nema
phases~N-N! or one isotropic and two nematic phas
(I -N-N) can occur. This has been observed experiment
@13# and predicted theoretically for bi-disperse and trid
perse systems, i.e., mixtures of rods with two or three diff
ent lengths@19–23#. However, a detailed investigation of th
effects of full length polydispersity, i.e., of a continuous d
tribution of rod lengths, on the Onsager theory remains
open problem.
©2003 The American Physical Society02-1
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A. SPERANZA AND P. SOLLICH PHYSICAL REVIEW E67, 061702 ~2003!
Perturbative approaches@16,17# by their nature cannot acces
qualitative changes to the phase diagram such as the o
rence ofN-N or I -N-N coexistence. Our lead question fo
this paper is therefore: canN-N and I -N-N coexistences oc
cur in length-polydisperse systems of thin hard rods?
cases where the length distribution has two or three p
nounced peaks, one expects a behavior similar to the
disperse or tridisperse case, so that the answer shoul
positive. Much less clear is what to expect for unimod
length distributions, and this is the case that we will consid

We concentrate on the onset of isotropic-nematic ph
coexistence coming from low density, i.e., on the isotro
cloud point; this can be calculated numerically with som
effort using an algorithm that solves directly the integ
equation for the orientational distribution of the nema
phase. We choose to start our analysis from a fat-tailed~log-
normal! length distribution with a finite upper cutoff on ro
length. This choice is inspired by the interesting results
tained by Šolc @24,25# for polydisperse homopolymers, an
by our recent investigation@26# of length polydispersity ef-
fects within theP2 Onsager model; the latter is obtained by
simplification of the angular dependence of the excluded v
ume of the Onsager theory. We showed that within this s
plified modelI -N-N coexistence is indeed possible in a sy
tem with a log-normal~and hence unimodal! rod length
distribution. The cloud curve, which gives the density whe
phase separation first occurs as a function of the width of
length distribution, exhibits a kink where the syste
switches between two different branches ofI -N phase coex-
istence. The shadow curve, which similarly records the d
sity of the incipient nematic ‘‘shadow’’ phase, has a cor
sponding discontinuity. Precisely at the kink in the clo
curve a single isotropic coexists with two different nemati
so that this kink forms the beginning of anI -N-N coexist-
ence region. Both the cloud and the shadow curve w
found to depend strongly on the rod cutoff length; in t
limit of large cutoff, they approach the same limiting form
which is universal for all length distributions with a fatte
than-exponential tail. The nematic shadow phase has ra
peculiar properties, being essentially identical to the coex
ing isotropic, except for an enrichment in the longest ro
long rods are also the only ones that have significant or
tational order.

The above results for theP2 Onsager model suggest th
also in the unapproximated Onsager theory a rod length
tribution with a fat tail should have pronounced effects
the phase behavior. We will show numerically that the clo
curve indeed has a kink, and the shadow curve a corresp
ing discontinuity, demonstrating that the phase diagram c
tains a region ofI -N-N coexistence. In fact, the effects of th
fat-tailed length distribution are even stronger than for theP2
Onsager model, with the nematic shadow phase contai
essentially only the very longest rods in the system. T
numerical results leave open a number of questions, and
therefore supplement them with a theoretical analysis.
show that the assumption of a nematic shadow phase d
nated by the longest rods is self-consistent, and are ab
predict that in the limit of large cutoff the density of th
cloud point actually tends to zero: even though the aver
06170
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rod length is finite, the presence of a tail of long rods driv
the system to phase separate at any nonzero density. M
vated by these results, we finally revisit the case of r
length distributions with an exponential tail, using the Sch
distribution as an example. Numerical results show, surp
ingly, that even here a regime occurs where the cutoff len
matters and the nematic shadow phase contains pred
nantly the longest rods; a kink in the cloud curve again
veals the presence of anI -N-N coexistence region.~This is
in stark contrast to our results for theP2 Onsager model@27#,
where the exponential tail of the distribution produces
unusual effects.! By returning to our theoretical analysis, w
find that the long-rod effects are weaker for the Schulz d
tribution than for the log-normal case: they only occur abo
a certain threshold value for the width of the rod length d
tribution, and the large-cutoff limits of the cloud and shado
densities above this threshold remain nonzero.

The paper is structured as follows. In Sec. II, we outli
the extension to continuous length distributions of the O
sager theory and derive the phase coexistence equation
the isotropic cloud point. Section III describes the numeri
method used to locate the cloud point and gives our res
for the phase behavior for log-normal length distributio
with finite cutoff. In Sec. IV, we outline our theory for th
large-cutoff limit and compare with numerical results at
nite but large cutoff. Finally, in Sec. V we turn to system
with a Schulz distribution of lengths, giving numerical r
sults and sketching an appropriately modified theoret
analysis. Section VI contains a summary and a discussio
avenues for future work. In Appendix A, we review in ou
line the high-density scaling theory for the monodispe
Onsager theory, which we need in our analysis of the lar
cutoff limit. In Appendix B, the main approximation unde
lying our theory for the log-normal distribution is justified
while the appropriate modifications for the Schulz distrib
tion are sketched in Appendix C.

II. THE POLYDISPERSE ONSAGER THEORY

The Onsager theory with length polydispersity models
system of hard spherocylinders with equal diametersD, but
different lengthsL. We introduce a reference length scaleL0
and write L5 lL 0, where l is a dimensionless normalize
length. The Onsager limit is then taken by consideri
D/L0→0 at constant values for the normalized lengthsl.
From now on, we will refer tol itself as the rod length,
unless stated otherwise; it can, in principle, range over all
values between 0 and̀.

The thermodynamic state of the system is described
the density distributionr( l ,V). This is defined such tha
r( l ,V) dl (dV/4p) is the number density of rods with
lengths in the rangel . . . l 1dl and pointing along a direc
tion within the solid angledV aroundV. In terms of spheri-
cal coordinates, with thez direction taken to be the nemati
axis, we havedV5sinu du dw and the density distribution is
independent of the azimuthal anglew, r( l ,V)[r( l ,u). It
can thus be decomposed according to

r~ l ,u!5r~ l !P~uu l !5rP~ l !P~uu l !.
2-2
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Here,r( l ) is the density distribution over lengths,

r~ l !5E dV

4p
r~ l ,u!5

1

2E d cosu r~ l ,u!5E dũ r~ l ,u!,

where we have introduced the shorthand

dũ5
1

2
d cosu.

The overall rod number density is

r5E dl r~ l !5E dl dũ r~ l ,u!,

so thatP( l )5r( l )/r gives the normalized length distribu
tion. From the definition ofr( l ) it also follows that the ori-
entational distributionsP(uu l ) for rods of fixed length are
normalized in the obvious way,*dũP(uu l )51. Notice that
the factor 4p in the definition ofr( l ,V) has been chosen s
that for an isotropic phase one has the simple express
P(uu l )51 andr( l )5r( l ,u).

We can now state the free-energy density for the polyd
perse Onsager theory~see, e.g., Ref.@17#!. We use units such
that kBT51 and make all densities dimensionless by mu
plying with the unit volumeV05(p/4)DL0

2. The free-energy
density is then

f 5E dl r~ l !@ ln r~ l !21#1E dl dũ r~ l !P~uu l !ln P~uu l !

1
1

2E dl dl8dũ du 8̃r~ l !r~ l 8!P~uu l !P~u8u l 8!l l 8K~u,u8!.

~1!

The first term gives the entropy of an ideal mixture, wh
the second term represents the orientational entropy of
rods. The third term is the appropriate average of the
cluded volume (8/p)V0l l 8u singu ~with V0 absorbed by our
density scaling! of the two rods at an angleg with each
other. The kernel@6,11# K(u,u8) results from the average o
(8/p)usingu over the azimuthal anglesw,w8 of the rods,

K~u,u8!5
8

pE0

2pdw8

2p

dw

2p
usingu

5
8

pE0

2pdw

2p
A12~cosu cosu81sinu sinu8 cosw!2.

As in the monodisperse case, the orientational distributi
P(uu l ) are obtained by minimization of the free energy, E
~1!; inserting Lagrange multipliers to enforce the normaliz
tion of P(uu l ), one finds

P~uu l !5
elc(u)

E du 8̃elc(u8)

, ~2!
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c~u!52E dl8du 8̃r~ l 8!P~u8u l 8!l 8K~u,u8!. ~3!

The conditions for phase equilibrium are that the coexist
phases must have equal chemical potentialm( l ) for all rod
lengths l, as well as equal osmotic pressure. The chem
potentials can be obtained by functional differentiation of t
free energy~1! with respect tor( l ). The orientational distri-
butionsP(uu l ) do depend onr( l ) but this dependence ca
be ignored becausef, having been minimized, is stationar
with respect to theP(uu l ). Carrying out the differentiation
and inserting Eq.~2! gives

m~ l !5
d f

dr~ l !

5 ln r~ l !1E dũ P~uu l !F lc~u!2 lnE du 8̃elc(u8)G
1E dl8dũ du 8̃r~ l 8!P~uu l !P~u8u l 8!l l 8K~u,u8!

~4!

5 ln r~ l !2 ln E dũ elc(u). ~5!

The osmotic pressure can be obtained from the Gib
Duhem relation, which for a polydisperse system reads

P5E dl m~ l !r~ l !2 f .

Inserting Eqs.~2! and ~4! then yields

P5r2
1

2E dl dũ lr~ l !P~uu l !c~u!. ~6!

A. Isotropic-nematic phase coexistence

We now specialize the phase coexistence conditions
I -N coexistence, and then eventually to the isotropic clo
point, i.e., the onset ofI -N coexistence coming from low
densities. The isotropic phase will have

PI~uu l !51, c I~u!5c I52c1r1
I , P I5r I1

1

2
c1~r1

I !2,

~7!

where we have defined the first momentr1 of the density
distributionr( l ,u),

r15E dl lr~ l !5rE dl lP~ l !5r^ l &,

which represents the scaled rod volume fractionr1
5(L0 /D)f. We have also used the fact that the average
the kernelK(u,u8) over one of its arguments is just an is
tropic average over (8/p)usingu, giving
2-3
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E du 8̃K~u,u8!5
8

p

1

2E0

p

dg singusingu5
8

p

p

4
52[c1 .

The equality of the chemical potentials~5! gives for the den-
sity distribution in the nematic phase,

rN~ l !5r I~ l !E dũ elg(u), ~8!

where

g~u!5cN~u!2c I5cN~u!1c1r1
I . ~9!

The full density distribution over lengths and orientations
therefore, using Eq.~2!,

rN~ l ,u!5rN~ l !PN~uu l !5r I~ l !elg(u) ~10!

and the osmotic pressure~6! of the nematic phase can b
rewritten as

PN5E dl dũ r I~ l !elg(u)2
1

2E dl dũ l r I~ l !elg(u)cN~u!.

~11!

In the following, we will concentrate on the isotropic clou
point, where the isotropic ‘‘cloud’’ phase starts to coex
with an infinitesimal amount of nematic ‘‘shadow’’ phase. A
the cloud point, the isotropic density distribution ov
lengths,r I( l ), therefore coincides with the overall densi
distribution of the system,r (0)( l ), which we call theparent
distribution. It can be written asr (0)( l )5rP(0)( l ), where
r5*dl r (0)( l ) is the overall parent number density an
P(0)( l ) the normalized parent length distribution. Since
properties of the isotropic cloud phase are determined by
parent, we will drop the superscript ‘‘I’’ in the following. We
will also take the parent distribution to have an avera
length ^ l &51; any other choice could be absorbed into t
reference lengthL0. This implies that the density an
~scaled! volume fraction of the isotropic phase are equ
r15r. With this notation, the density distribution~10! of the
nematic shadow isrN( l ,u)5rP(0)( l )elg(u) and fully deter-
mined byr andg(u). The functiong(u) must obey

g~u!52rE dl du 8̃ P(0)~ l !elg(u8)lK ~u,u8!1c1r

~12!

as follows from Eq.~3! for cN(u) together with Eq.~9!. The
cloud point density is the smallest value ofr for which in
addition the pressure equality is satisfied. Using Eq.~7! for
the pressure of the isotropic, and Eqs.~9! and~11! for that of
the nematic, this condition reads

r1
1

2
c1r25rE dl dũ P(0)~ l !elg(u)

2
r

2E dl dũ lP (0)~ l !elg(u)@g~u!2c1r#.

~13!
06170
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B. Fat-tailed rod length distributions

So far, everything is general and applies to any par
length distributionP(0)( l ). Let us now focus on the case of
parent distribution with a fat, i.e., less than exponentia
decaying tail for largel. At the cloud point we have from Eq
~8! the density distributionrN( l )5rP(0)( l )*dũ elg(u) in the
nematic shadow phase, or if we isolate the value ofg(u) at
u50

rN~ l !5rP(0)~ l !elg(0)E dũ el [g(u)2g(0)]. ~14!

In a nematic phase, one expectsg(u)<g(0) and therefore
the angular integral reduces to a less than exponentially v
ing function of l. Moreover,g(0) is expected to be positive
since the nematic phase should contain the longer rods.
nematic density distributionrN( l ) is therefore exponentially
diverging for largel whenever the normalized parent distr
bution P(0)( l ) decays less than exponentially. In order
ensure finite values for the density and volume fraction
the nematic phase, we thus need to impose a finite cutofl m
on the length distribution; unless otherwise specified, al
integrals will therefore run over 0 . . .l m from now on. The
presence of a cutoff is of course also physically reasona
since any real system contains a finite largest rod len
Nevertheless, we will later also consider the limit of infini
cutoff, which highlights the effects of the presence of lo
rods.

III. NUMERICAL RESULTS FOR THE ONSET OF I -N
COEXISTENCE

A. Numerical method

A numerical determination of the isotropic cloud poi
involves the solution of the two coupled equations~12! and
~13! for r and g(u). In an outer loop we vary the densit
until the smallestr that satisfies the pressure equality~13! is
found; we use a false position method@28#. The nontrivial
part of the algorithm is the inner loop, i.e., the solution of t
functional equation~12! for g(u) at given r. An iterative
method inspired by the one used by Herzfeldet al. @7# for the
monodisperse case turns out to converge too slowly in
presence of polydispersity. We therefore choose to repre
g(u) by its valuesgi5g(u i) at a set ofn discrete pointsu i ;
the values ofg(u) for uÞu i are then assumed to be given b
a cubic spline fit@29# through the points (u i ,gi). This turns
the functional equation~12! into a set ofn nonlinear coupled
equations which can be solved by, e.g., a Newton-Raph
algorithm @28#. To keepn manageably small while keepin
the spline representation accurate, a judicious choice ofu i is
important. We exploit the symmetryg(u)5g(p2u) and
choose a nonlinear~geometric! spacing ofu i over the range
0 . . .p/2, with more points around the origin, whereg(u) is
least smooth.

While Eqs. ~12! and ~13!, in principle, involve double
integrals overu and l, one notices that only the twol inte-
grals
2-4
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h~x!5E dl P(0)~ l !elx, h8~x!5E dl P(0)~ l ! lelx

are needed. We therefore precompute these and store
once and for all as cubic spline fits that can be evaluated v
efficiently.

As an alternative to the approach above, we also con
ered calculatingg(u) by minimizing an appropriate func
tional. If m I( l ) and P I are the chemical potentials and o
motic pressure of the isotropic parent phase, then one e
sees that a local minimum of the functional

J@r~ l ,u!#5 f @r~ l ,u!#2E dl dũ m I~ l !r~ l ,u!1P I

~15!

corresponds to a phaser( l ,u) with the same chemical po
tentials as the parent. Inserting forr( l ,u) the known form
~10! for the nematic density distribution,J turns into a func-
tional of g(u), and the condition for a local minimum be
comes equivalent to Eq.~12!. J@g(u)# always hasg(u)
[0 as a minimum, corresponding to the isotropic par
itself; but close to the onset of phase coexistence an a
tional nematic solution withg(u)Þ0 appears. Notice that
geometrically,J is a tilted version of the free energy fo
which the tangent~hyper!plane at the parent is horizonta
(J50). At phase coexistence, i.e., for a parent with t
cloud point density, the tangent plane also touches the n
atic phase and so the isotropic and the nematic minima oJ
are both at ‘‘height’’J50.

Numerically, one could minimizeJ by again representing
g(u) as a spline through a finite number of pointsgi
5g(u i) and then minimizing the resulting function of thegi .
In general, this turns out to be no easier than the solutio
the similarly discretized version of Eq.~12!. However, the
minimization approachis useful when g(u) assumes a
simple parametric form. We will see later that this is inde
the case for a large cutoffl m , with g(u) being well approxi-
mated by the two-parameter formg(u)5a2b sinu. Insert-
ing this into J and minimizing overa and b then gives an
approximate solution forg(u); when used as a starting poin
for g(u), this makes it significantly easier to converge t
numerical solution of the discretized equation~12! described
above.

B. Results for log-normal length distribution

With the numerical method described in the preced
section, it is possible to solve for the onset of isotrop
nematic phase coexistence for, in principle, arbitrary par
length distribution. We choose here a specific fat-tai
length distribution, the log-normal, that has already giv
interesting results in polymers@24# and in our previous
analysis of theP2 Onsager model@26#. The log-normal dis-
tribution has the form

P(0)~ l !5
1

A2pw2

1

l
expF2

~ ln l 2m!2

2w2 G ~16!
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with a finite length cutoffl m . The quantityw, which tunes
the width of the distribution, is fixed by the normalized sta
dard deviations ~in the following referred to as polydisper
sity!,

s25
^ l 2&2^ l &2

^ l &2

to bew25 ln(11s2). The second parameterm is determined
so that the parent has average length^ l &51, giving m5
2w/2. Notice that with these choices, the parent length d
tribution is normalized and has the desired moments^ l &51
and ^ l 2&511s2 only in the limit of infinite cutoff l m . The
deviations for finite cutoffs are small even for relative
modestl m , however. For instance, at cutoffl m550 ands
50.5, the integrals*0

l mdl l nP(0)( l ) for n50,1,2 differ from
their respective values at infinite cutoff~1, 1, and 1.25! by
values of order 10217, 10215, and 10213. Since we will not
consider smaller cutoff values below, these small correcti
can safely be neglected.

In our previous analysis of theP2 Onsager model@26#, we
observed that for log-normal length distributions, the clo
curve has a kink, and the shadow curve a correspond
discontinuity; at the kink, the isotropic phase is in coexi
ence with two distinct nematics, so that the phase diag
must contain a region ofI -N-N coexistence. In theP2 On-
sager case, the simplicity of the model actually allowed us
compute the complete phase diagram and locate the th
phaseI -N-N region explicitly. For the full Onsager theor
treated here, we can only find the cloud and shadow curve
present, not the full phase diagram; nevertheless, a kin
the cloud curve will again imply the presence of anI -N-N
region in the full phase diagram. In Fig. 1, we show t
cloud and shadow curves, i.e., the number density of
isotropic cloud~a! and nematic shadow~b! plotted against
polydispersity, for a log-normal parent with two differen
cutoffs. The presence of the kink in the cloud curves, and
corresponding discontinuity in the shadow curves, is cl
evidence of the presence of anI -N-N coexistence region
starting at the kink of the cloud curve. The positions of t
kink and discontinuity, respectively, as well as the shapes
the cloud and shadow curves above them, show a str
dependence on the cutoff length; both curves move to
nificantly smaller densities asl m increases. For polydispers
tiess below the kink, on the other hand, the number of lo
rods is too small to have a significant effect on the ph
separation and one has essentially cutoff-independent be
ior that connects smoothly with the monodisperse limits
50. These observations are in qualitative accord with
earlier results for theP2 Onsager model with the same leng
distribution @26#.

Moving across the discontinuity from below, the shado
curve jumps from a ‘‘normal’’ nematic branch to an unusu
nematic phase which, as we will see below, is complet
dominated by the longest rods in the parent distribution.
the rescaled volume fraction (r1) representation of the
shadow curve shown in Fig. 2, the different characteristics
the two nematic phases are clear. While at low polydisp
2-5
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sity, r1
N is of the order of unity, it jumps by two orders o

magnitude on crossing the discontinuity. This shows that
fractionation effect that one normally encounters in polyd
perse systems, with the long rods found preferentially in
nematic phase, becomes extreme here. A plot of the ave
rod length in the nematic shadow against polydispersity~Fig.
3!, in fact, shows that above the discontinuity, the nema
phase contains almost exclusively rods of length close to

FIG. 1. ~a! Number densityr of the cloud phase for length
cutoff l m550 ~solid! and l m5100 ~dashed!, plotted against the
polydispersitys on they axis. Notice the kinks in the two curves
which imply the presence of a three-phaseI -N-N coexistence re-
gion in the full phase diagram. The kinks correspond, as t
should, to discontinuities in the shadow curves~b!. Both cloud and
shadow curves are strongly cutoff dependent, moving towa
lower densities asl m increases.

FIG. 2. Scaled volume fractionr1
N of the nematic shadow phas

at l m550 ~solid! and l m5100 ~dashed!. Notice that the discontinu-
ity of the two curves is now much wider than in the number dens
representation of the shadow curves in Fig. 1~b!.
06170
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cutoff length. Since the longer rods are generically expec
to be more strongly ordered, one should then also find
the nematic shadow phase has a very strong orientati
order. This is indeed the case: the orientational order par
eter S, defined as an average in the nematic phase over
second Legendre polynomialP2(cosu)5(3 cos2 u21)/2,

S5E dl dũ PN~ l !PN~uu l !P2~cosu!

is almost indistinguishable from 1 above the discontinuity
the nematic shadow curve, implying that the typical angleu
that the rods make with the nematic axis are very small. T
also implies that the rods we consider must be rather thin
Onsager’s second virial approximation to be valid: for mon
disperse rods@30#, the criterion isD/L!u. We return to this
point in Sec. IV C.

The results shown above for the finite cutoff regime lea
open a number of questions. For example, we observed
both the isotropic cloud and nematic shadow curves mov
lower densities as the cutoff increases, but the modesl m
values used are too small to determine whether the cu
will converge to a nonzero limit asl m grows large or instead
approach zero. One would also like to ascertain whether
average rod length in the nematic shadow really tends tol m
for large cutoffs, as suggested by Fig. 3, and what happen
the rescaled nematic volume fractionr1

N in this limit ~Fig. 2
suggests that it might become large!. In the following sec-
tion, we therefore turn to a theoretical analysis of the lim
l m→`, which will clarify all these points.

IV. THEORY FOR FAT-TAILED DISTRIBUTIONS
WITH LARGE CUTOFF

Above we saw that, at the onset of isotropic-nema
phase coexistence in systems with log-normal length dis

y

s

y

FIG. 3. Average lengtĥ l &N5r1
N/rN in the nematic shadow

phase against polydispersity for cutoffsl m550 ~solid! and l m

5100 ~dashed!. Above the discontinuity, fractionation becomes e
treme. In fact, at the discontinuity the nematic phase appears t
composed only of rods with lengths of the order of the cut
length. At the top of the plot, for very large polydispersities whe
the parent length distribution becomes somewhat more unifo
some shorter rods are also included in the nematic phase and re
the average length.
2-6
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butions, the nematic shadow phase appears to be domin
by the longest rods in the distribution, with lengthsl' l m . In
this section, we will construct a self-consistent theory, ba
on this hypothesis, for the phase behavior in the limit of la
cutoffs l m . From this we will be able to extract the limitin
dependence onl m of the cloud point densityr, the density
rN, and~scaled! volume fractionr1

N of the nematic shadow
phase, and the functiong(u) determining the orientationa
ordering of the nematic phase. At the end of this section,
will then compare these predictions with numerical resu
obtained for finite but large cutoff.

A. Dominance of long rods in the nematic phase

Recall that, in principle, we need to solve Eqs.~12! and
~13! for g(u) and r to determine the isotropic cloud poin
and the properties of the coexisting nematic shadow phas
will be useful to isolate, in Eq.~12!, the contributionelg(0)

that determines the divergence of the nematic density di
bution ~14!. Define the function

h~u!5 l m@g~0!2g~u!# ~17!

with the sign chosen such thath(u) should be non-negative
for all u. Equation~12! evaluated atu50 then gives

g~0!52rE dl P(0)~ l !elg(0)l E du 8̃e2( l / l m)h(u8)K~0,u8!

1c1r, ~18!

and subtracting from Eq.~12! yields

h~u!5r l mE dl P(0)~ l !elg(0)l

3E du 8̃e2( l / l m)h(u8)@K~u,u8!2K~0,u8!#. ~19!

Together, Eqs.~18! and ~19! for g(0) and h(u) are, of
course, equivalent to Eq.~12! for g(u).

To formalize the assumption that the nematic phase
dominated by the longest rods, consider now the nem
density distribution~14!, which in our new notation reads

rN~ l !5rP(0)~ l !elg(0)E dũ e2( l / l m)h(u). ~20!

If the exponential factor exp@lg(0)# is large enough for the
nematic phase indeed to be dominated by the longest r
we can replace the weakly varying~at most as a power law in
l ) angular integral by its value atl 5 l m , giving for the nem-
atic densityrN5*dl rN( l )

rN5rE dl P(0)~ l !elg(0)E dũ e2h(u). ~21!

We can now make the same approximation in Eq.~18!: the
weakly varying factor in thel integral isl times the angular
integral, and replacing this by its value atl 5 l m yields
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g~0!52r l mE dl P(0)~ l !elg(0)E dũ e2h(u)K~0,u!1c1r.

~22!

In Eq. ~19! for h(u), the analogous approximation gives

h~u!5r l m
2 E dl P(0)~ l !elg(0)

3E du 8̃e2h(u8)@K~u,u8!2K~0,u8!#. ~23!

Finally, consider the expression on the right-hand side~rhs!
of Eq. ~13! for the osmotic pressurePN in the nematic. The
first term is the ideal contribution, i.e., the nematic dens
rN, while inserting definition~17! in the second term gives

PN5rN2
r

2E dl P(0)~ l !elg(0)l

3E dũe2( l / l m)h(u)F2
1

l m
h~u!1g~0!2c1rG .

~24!

Replacingl by l m in the weakly varying terms then yields

PN5rN2
r

2E dl P(0)~ l !elg(0)

3E dũ e2h(u)$2h~u!1 l m@g~0!2c1r#%. ~25!

We show in Appendix B thata posteriori the approximation
of dominance of the long rods can be justified in all cas
above, with the contributions to thel integrals from rod
lengthsl ! l m becoming negligible forl m→`.

B. The large-cutoff scaling solution

We have now got four equations to be solved forrN,
g(0), h(u) and r, appropriately simplified using the as
sumption that the nematic phase is dominated by the lon
rods in the parent distribution. These are Eqs.~21!–~23! and
the pressure equalityPN5r1(c1/2)r2, with PN from Eq.
~25!. Using Eq.~21!, Eq. ~23! can be written as

h~u!5reff

E du 8̃e2h(u8)@K~u,u8!2K~0,u8!#

E du 8̃e2h(u8)

. ~26!

Here, we have defined

reff5rNl m
2 ~27!

which is just the dimensionless density of the nematic pha
with the factorl m

2 arising from the fact that, since the nemat
is effectively monodisperse withl 5 l m , one should usel mL0
rather thanL0 in the definition of the unit volumeV0 @see
before Eq.~1!#. In the form above, Eq.~26! is identical to Eq.
~A4! in Appendix A for amonodispersesystem at dimension
less densityreff . Anticipating thatreff will be large, an as-
2-7
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sumption to be checkeda posteriori, we then deduce imme
diately thath(u) will be given by the high-density scalin
solution sketched in Appendix A,h(u)5h̃(t), with the scal-
ing variablet5reffsinu. The scaling function is determine
by Eq. ~A8!:

h̃~ t !5^K̃~ t,t8!2K̃~0,t8!& t8 , ~28!

where the average overt8 is over the normalized distribution

P̃~ t !5
1

g
te2h̃(t), g5E dt te2h̃(t), ~29!

and K̃(t,t8) is the small-angle scaling form~A7! of the ker-
nel K(u,u8). The range of all averages and integrals ovet
and t8 can be taken as 0 . . .̀ ~rather than 0 . . .reff) for
large reff , since the larget regime gives only a negligible
contribution.

With the form ofh(u) determined up to the single param
eter reff5rNl m

2 , just three unknownsr, rN, andg(0) now
remain to be determined from Eq.~21!, Eq. ~22!, and the
osmotic pressure equality. We now simplify these relatio
further making use of the fact that in all angular integr
involving the factor exp@2h(u)#
5exp@2h̃(reff sinu)# only small anglesu;1/reff contribute
significantly. Physically, this means that the rods in the ne
atic shadow phase, which is at high dimensionless den
reff , have strong orientational order. For such smallu we can
set sinu'u and transform everywhere to the scaling varia
t5reff sinu'reffu. Equation~21! then becomes, using defi
nition ~29!

rN5rE dl P(0)~ l !elg(0)E dt t

reff
2

e2h̃(t)

5
rg

reff
2 E dl P(0)~ l !elg(0). ~30!

Equation ~22! can be similarly transformed and, usin
K(0,u)5(8/p)sinu5(8/p)t/reff , it reads

g~0!52r l mE dl P(0)~ l !elg(0)E dt t

reff
2

e2h̃(t)S 8

p

t

reff
D1c1r.

~31!

Comparing with Eq.~30!, and usingrNl m /reff51/l m , this
can be written in a simpler form as an average over
distribution ~29!,

g~0!52
8

p

^t& t

l m
1c1r. ~32!

Finally, expression~25! for the osmotic pressure in the nem
atic can also be simplified by using thatu is small and trans-
forming to the scaling variablet. Inserting Eq.~32!, one finds
06170
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PN5rN1
r

2E dl P(0)~ l !elg(0)
g

reff
2 F ^h̃~ t !& t1

8

p
^t& tG .

~33!

In Appendix A, we show@Eq. ~A15!# that the scaling prop-
erties of the high-density limit imply that the constant in t
square brackets has the value 4; using also Eq.~30! we then
get the simple result

PN53rN. ~34!

This is identical to Eq.~A12! derived in Appendix A for
monodisperse nematics at high~dimensionless! densities,
and therefore consistent with our assumption that the n
atic shadow phase behaves as an effectively monodisp
system. The isotropic parent phase has pressureP I5r
1(c1/2)r2, so that the pressure equality takes the form

rN5
1

3 S r1
c1

2
r2D . ~35!

We can now proceed to determine thel m dependence ofr,
rN, andg(0). Multiplying Eq. ~30! by (rN)2 and inserting
Eq. ~35! gives

r3

27S 11
c1

2
r D 3

5r
g

l m
4 E dl P(0)~ l !elg(0).

The l integral will again be dominated by the longest rods,
that we can setP(0)( l )5P(0)( l m) to leading order~see Ref.
@26#! to obtain

r2

27S 11
c1

2
r D 3

5
g

l m
4

P(0)~ l m!
el mg(0)

g~0!
.

Inserting Eq.~32! to eliminateg(0), wefinally get a nonlin-
ear equation relatingr and l m ,

el mc1r5
r2l m

4

27g S 11
c1

2
r D 3S c1r2

8

p

^t& t

l m
D e(8/p)^t& t

P(0)~ l m!
.

To obtain the asymptotic solution for largel m , we anticipate
thatr will vary no stronger than a power law withl m ; for all
fat-tailed parent distributions, except those with power-l
tails, the dominantl m dependence on the rhs will then b
through the factor 1/P(0)( l m). Taking logarithms we have

l mc1r52 ln P(0)~ l m!1O~ ln l m!. ~36!

Specializing to log-normal parent distributions, wi
ln P(0)(l)52(ln2 l)/(2w2) to leading order, we finally get

r5
ln2 l m

2c1w2l m

1OS ln l m

l m
D ~37!

showing thatr indeed varies withl m as a power law~with
logarithmic corrections!. Our theory thus predicts that th
isotropic cloud point density converges to zero for large c
offs; in the extreme limit of a log-normal parent distributio
2-8
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with an infinite cutoff, phase separation would occur at a
nonzero density. From Eq.~35!, the density of the nematic
shadow phase likewise vanishes for large cutoff, withrN

5r/3 to leading order. Forg(0), wehave from Eq.~32!,

g~0!5
ln2 l m

2w2l m

1OS ln l m

l m
D2

8

p

^t& t

l m
, ~38!

and the last term ofO(1/l m) is subdominant compared t
both the first term and the first-order correctionO„(ln lm)/lm….
We can also now write down the whole functiong(u), using
g(u)5g(0)2h(u)/ l m5g(0)2h̃(rNl m

2 sinu)/lm. From Ap-

pendix A we know that the scaling functionh̃ is given by
h̃(t)5(8/p)t for large t, up to correction terms ofO(1);
once multiplied by 1/l m , these give only subleading corre
tions tog(u). We thus find to leading order

g~u!5g~0!2
1

l m
h̃~rNl m

2 sinu!.a2b sinu, ~39!

where, using Eq.~37! and the leading-order relationrN

5r/3,

a[g~0!5
ln2 l m

2w2l m

1OS ln l m

l m
D ~40!

b5
8

p
l mrN5

8

3p

ln2 l m

2c1w2
1O~ ln l m!. ~41!

The dominance of the long rods in the nematic phase t
results in a very simple form forg(u), with a vanishing and
b slowly diverging in the limitl m→`.

Having obtained the desired predictions from our theo
we can now also verify that the assumption of a large dim
sionless densityreff for the nematic phase is self-consiste
From Eq.~37! and the fact that to leading orderrN5r/3, one
has reff5rNl m

2 ; l m ln 2lm for a log-normal parent distribu
tion, and this indeed becomes arbitrarily large as the cu
l m increases.

C. Validity of Onsager theory

Before comparing our theoretical predictions with n
merical results at finite cutoff, we briefly assess the limit
validity of Onsager’s second virial approximation. For
monodisperse system, an analysis of the scaling of the
ond and third virial coefficients@30# shows that in the nem
atic phase, typical rod anglesu with the nematic axis have to
be@D/L, with D andL the diameter and length of the rod
for the truncation after the second virial contribution to
justified. In our situation, the nematic phase is effectiv
monodisperse with~unnormalized! rod lengthL0l m , so the
condition becomesu@D/(L0l m). We showed above that th
typical angles scale, for large cutoffl m , as u;1/reff

51/(rNl m
2 ), so that the second virial approximation brea

down when
06170
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L0l m
;

1

rNl m
2

. ~42!

Now rN scales as (ln2 lm)/lm, so this becomes ln2 lm;L0 /D.
This shows that fairly large values of the aspect ratioL0 /D
of the ‘‘reference rods’’ are necessary in order for the the
to be valid for large cutoffs. For instance, one would ne
L0 /D.50 for a cutoffl m51000. The longest rods are the
very thin indeed, withL0l m /D.50 000.

A more physically intuitive interpretation of the abov
condition is that it corresponds to the requirement of hav
a rod volume fractionf!1. For monodisperse rods, w
have~see Appendix A! that at large dimensionless densityr,
u;r21;(L2DN/V)21. The limit of validity of the Onsager
theory is therefore given byD/L;u;V/(L2DN) or 1
;(LD2N)/V;f. The same is true for our calculatio
above: the volume fraction of the nematic phase isfN

5(D/L0)r1
N.(D/L0) l mrN. Condition ~42! thus again be-

comesfN;1, and we needfN!1 for the second virial
theory to be valid.

D. Comparison with numerical results

We now compare the theoretical predictions obtain
above for the limitl m→` with numerical calculations for
finite but large cutoff. Our numerical results will be able
confirm only the leading terms of the scaling solution, sin
subleading corrections@e.g., to result~39! for g(u)] can arise
from the regime of very small anglesu;1/reff51/(rNl m

2 ),
which we cannot resolve numerically.

We begin by checking the predicted relations between
cloud point densityr and the other quantities we have an
lyzed theoretically, namely, the parametersa andb specify-
ing the leading behavior~39! of g(u), and the nematic
shadow densityrN. In Fig. 4, we plotg(0)[a againstr for
a range of cutoffsl m between 50 and 3000. At large cutof
i.e., at smallr, the numerical results are clearly seen to a
proach the theoretical predictiong(0)5c1r, while for
smaller cutoffs deviations from the asymptotic theory app
as expected.

FIG. 4. Parametric plot ofg(0) againstr, for a log-normal
distribution with s50.5 and a range of cutoffs between 50 a
3000. At smallr ~largel m), the numerical results~solid! are in very
good agreement with the theoretically predicted asymptotic rela
g(0)5c1r ~dashed!.
2-9
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For the parameterb, our theory predictedb5(8/3p) l mr
in the limit of large l m . In Fig. 5, we plot the numerically
obtainedb against this theoretical prediction, for a range
cutoffs between 50 and 3000. At largel mr the convergence
to the theoretical solution is clear, while at finite cuto
~small l mr) the value ofb lies rather below the theoretica
expectation. This is not surprising, sinceb is expected to
diverge with l m like ln2 lm and therefore rather slowly; a
finite cutoff, then, the correction terms will be rather impo
tant.

Based on the fact that the nematic pressure obeys
simple relationPN53rN in the large-cutoff limit, our theory
also predicts thatrN should be related tor by rN5@r
1(c1/2)r2#/35(r1r2)/3. A plot of rN againstr for the
same range of cutoffs as above~Fig. 6! clearly shows that
this relation is satisfied in the limit of largel m , i.e., smallr.
In fact, deviations from the predicted scaling are rath
small, already at modestl m ~here, in the range 50< l m
<3000). This shows that the dominance of the long ro
demonstrated also by the fact that the average length o
nematic phase is very close tol m ~Fig. 3!, appears quite early
on. Even atl m550, not only is the nematic phase compos

FIG. 5. Parametric plot ofb against the theoretically predicte
value (8/3p) l mr for a log-normal distribution withs50.5 and cut-
off between 50 and 3000. The convergence of the numerical re
~solid! to the theoretical prediction~dashed! for large cutoff, i.e.,
large l mr, is clear.

FIG. 6. Parametric plot of the nematic shadow densityrN

againstr for the same parent distribution and cutoff range as
Figs. 4 and 5. A very good agreement is observed between
numerical results~solid! and the theoretically predicted relatio
~dashed!.
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almost entirely of rods of the order ofl m , but the rods are
also sufficiently strongly ordered to make our scaling so
tion a good approximation.

Having confirmed the relations betweena, b, r, and
rN, the last prediction to verify is the variation of one o
these quantities withl m . We choosea[g(0), for which our
theory predicts the leading asymptotic behaviorg(0)
5(ln2 lm)/(2w2lm). In Fig. 7, we plot the numerically calcu
lated values ofg(0) versusl m and compare with the theo
retical prediction. The overall shape of thel m dependence is
well captured by the theory, although subleading correctio
which from Eq. ~38! are of relative orderO(1/ln lm), are
clearly not yet negligible in the range ofl m considered. In
summary, then, all numerical results are consistent with
theoretical predictions derived above.

V. THE SCHULZ DISTRIBUTION

Having observed the rather surprising effects caused
the long rods at the onset of isotropic-nematic coexistenc
systems with fat-tailed length distributions, an obvious qu
tion is whether similar phenomena are possible even
more strongly decaying length distributions. We therefo
now analyze, using the same numerical and theoretical m
ods as above, the case of a Schulz distribution of lengths.
this distribution, our previous studies of the Zwanzig@18#
andP2 Onsager models@27# did not show any signs of the
phase behavior being driven by the long rods. Howev
comparing our above results for the log-normal case w
those obtained for theP2 Onsager model@26#, it is clear that
in the full Onsager theory the effect of the long rods is mu
more pronounced than in the approximate models. Long-
effects might therefore also appear, in the full Onsa
theory, for the more strongly decaying Schulz distributio
but would then be expected to be weaker than for the l
normal case.

The Schulz length distribution can be written as

P(0)~ l !5
~z11!z11

G~z11!
l z exp@2~z11!l #, ~43!

lts

he

FIG. 7. Plot of numerically calculated values ofg(0) againstl m

~solid! together with the leading asymptotic behaviorg(0)
5(ln2 lm)/(2w2lm) predicted theoretically~dashed! for a log-normal
distribution withs50.5. The agreement is satisfactory, though c
rections to the asymptotic theory are clearly still important in t
range ofl m shown.
2-10
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where we have again imposed an average length of 1~for
infinite cutoff l m). The polydispersitys, defined as before a
the relative standard deviation of the distribution, is rela
to z by

s25
^ l 2&2^ l &2

^ l &2
5

1

z11
. ~44!

From Eqs.~14! and ~43! it is clear that ifg(0)>z11 the
nematic density distribution is again exponentially divergi
for large l. Assuming initially that this is not the case, how
ever, one can solve numerically Eqs.~12! and ~13! for the
onset of isotropic-nematic phase coexistence. The result
g(0) are shown in Fig. 8. For largez, i.e., small polydisper-
sity s5(11z)21/2, one hasg(0),z11 ~dashed line!. In
this regime, the nematic density distribution decays expon
tially for large l, and the results are essentially independ
of the cutoffl m , which could in fact be taken to infinity. Fo
smallerz, on the other hand,g(0).z11, implying that the
nematic density distribution is exponentially increasing an
finite cutoff l m is necessary. In this regime, the situation
sembles the case of the fat-tailed length distributions
cussed earlier, where for a large enough cutoff and poly
persity, the less than exponentially decaying len
distribution was not able to balance the divergence of
factor exp@lg(0)# in Eq. ~14!. With a Schulz distribution, the
only difference is that now the comparison is between t
exponential terms exp@2(z11)l# and exp@lg(0)#. Given this
analogy, it is not surprising that the cloud and shadow cur
~Fig. 9! show a behavior qualitatively similar to that foun
for the log-normal distribution: a kink in the cloud curve an
a discontinuity in the shadow curve again indicate the pr
ence of a three-phaseI -N-N coexistence region in the phas
diagram. Quantitatively, however, the kink in the cloud cur
@Fig. 9~a!# is now much less pronounced, and the cuto
dependence of the cloud curve above the kink is also ra
weaker. Similar comments apply to the shadow curve@Fig.
9~b!#: the discontinuity is still present but very small, wit
the nematic phases on the two different branches having
similar densities@Fig. 9~b!, inset#. As for the log-normal dis-
tribution, for small polydispersities~i.e., below the kink or
discontinuity, respectively! the cloud and shadow curves a

FIG. 8. The parameterg(0) of the nematic shadow phase plo
ted againstz for a Schulz distribution with cutoffl m5100. See text
for discussion.
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FIG. 9. ~a! Cloud curves for Schulz distributions with cuto
l m550 ~solid! and l m5100 ~dashed! plotted as cloud point density
r versus polydispersitys on they axis. The system is again dom
nated by the long rods for larges, but now the dependence on th
cutoff is much less pronounced than for a log-normal length dis
bution ~Fig. 1!. The cloud curves also exhibit a kink, more clear
visible only on a magnified scale~inset!. The dotted line shows the
theoretically predicted limiting formr51/(c1s2) of the cloud point
curve above the kink~see text! in the limit l m→`. ~b! Correspond-
ing shadow curves. The discontinuity corresponding to the kink
the cloud curves is much narrower than in the log-normal case~Fig.
1!, and is visible clearly only in the inset. The dotted line aga
gives the theoretical prediction for the shadow curve above
discontinuity in the limitl m→`, rN5(1/s211/2s4)/(3c1).

FIG. 10. Scaled volume fraction representation of the shad
curve for Schulz distributions with cutoffl m550 ~solid! and l m

5100 ~dashed!. Notice that, although the discontinuity is muc
more visible here than in the density representation@Fig. 9~b!#, the
maximum value ofr1

N is not reached at the discontinuity.
2-11
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A. SPERANZA AND P. SOLLICH PHYSICAL REVIEW E67, 061702 ~2003!
essentially independent of the cutoff and connect smoo
with the monodisperse limit ats50.

The discontinuity in the shadow curves is much more
parent in the scaled volume fraction representation~Fig. 10!.
Notice that now the discontinuity does not coincide with t
point wherer1

N reaches its maximum value, as was the c
for the log-normal distribution~Fig. 2!. This is also reflected
in a plot of the average rod length in the nematic shad
against polydispersity~Fig. 11!, which at the discontinuity in
the shadow curve jumps to a large value, but one that is
some way belowl m . In this region, the nematic phase th
contains many long rods, but is not yet entirely dominated
only the longest rods. This can also be understood by look
back at Fig. 8: for values ofz just below the discontinuity
~corresponding to the values ofs just abovethe discontinu-
ity in Figs. 10 and 11!, g(0) is very close toz11 and so the
overall exponential factor exp$@g(0)2(z11)#l% is almost con-
stant over the rangel 50 . . . l m , giving a broad nematic
length distribution~14! dominated by the nonexponenti
factorsl z*dũ el [g(u)2g(0)].

Theory for Schulz distributions with large cutoff

From the numerical results obtained above, it appears
the case of the Schulz distribution is actually rather simila
the log-normal case. In both cases, the presence of the
rods strongly affects the phase behavior above a cer
value of polydispersitys; the threshold value ofs tends to
zero asl m increases for the log-normal case, but appe
essentially independent ofl m for the Schulz distribution.
Above the threshold, the nematic phase is dominated by
long rods present in the system, although for the Schulz
tribution the average length seems to remain rather be
l m . Given these similarities, we now investigate whether
theory that we developed for the log-normal case can
extended to the case of the Schulz distribution. As we w
see, the central assumption of dominance of the long rod
the nematic phase can still be made self-consistent.

If the long rods again dominate the density distribution
the nematic phase, we can repeat all the steps up to Eq.~25!

FIG. 11. Average rod length in the nematic shadow phase
Schulz distributions with cutoff l m550 ~solid! and l m5100
~dashed!, plotted against polydispersitys on they axis. Above the
discontinuity, the average length jumps to a large value but rem
below l m , implying that the nematic phase is not yet entirely dom
nated by the longest rods.
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in Sec. IV. The same equation forh(u) follows, and if we
assume thatreff5rNl m

2 is large we get back the scaling so

lution h(u)5h̃(reff sinu). Angular integrals can then agai
be simplified because only small values ofu;1/reff are rel-
evant, leading to Eq.~30!, to the simple resultPN53rN for
the osmotic pressure in the nematic phase, and to expres
~32! for g(0)5c1r2(8/p)^t& t / l m . At this point the differ-
ent shape of the Schulz distribution enters: for largel m we
now expect thatg(0)→z11, rather thang(0)→0. This
then implies that the cloud point densityr has afinite limit
for large cutoff, given by

r5
z11

c1
5

1

c1s2
~45!

from Eq. ~44!. From the osmotic pressure equality 3rN5r
1(c1/2)r2, the nematic shadow density then also has a fin
limit,

rN5
1

3c1
S 1

s2
1

1

2s4D . ~46!

These theoretical predictions for the limiting form of th
cloud and shadow curves in the cutoff-dominated regime
shown by the dotted lines in Fig. 9, and are certainly pla
sible, given the numerical results for finite cutoffs.

To obtain the leading terms in the approach ofr andrN to
their limiting values, and to establish the threshold value
polydispersitys above which the onset ofI -N coexistence is
affected by the presence of the long rods, let us defind
5g(0)2(z11). As pointed out above, Eq.~30! still holds
for the Schulz distribution case, but now yields to leadi
order

rN5
c

l m
4 E dl l zed l , ~47!

where we have usedP(0)( l )} l ze2(z11)l and c collects all
numerical constants as well as the factorr/(rN)2 that ap-
proaches a constant forl m→` from Eqs.~45! and~46!. If d
converges to zero slowly enough withl m→` for the product
d l m to diverge, then the exponential factor is dominant in t
integral in Eq.~47! and we can replacel z by l m

z ~see Appen-
dix C! to get

rN5clm
z24 ed l m

d
.

Rearranging gives, with a new constantc8 that contains the
finite limit value of rN,

ed l m

d l m
5c8l m

32z .

The inverse of the function ofd l m on the left-hand side is
asymptotically just a logarithm, yielding

r

ns
2-12
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d;~32z!
ln l m

l m
. ~48!

For z,3, corresponding tos.1/2, this result is consisten
with our assumptions: we haved→0 and thusg(0)→z11
as expected, and alsod l m→` as assumed above. From th
convergence ofd to zero one can then also obtain the a
proach ofr and rN to their limit values: e.g.,c1r5g(0)
1(8/p)^t& t / l m5z111d1O(1/l m), giving r2(z11)/c1
;d to leading order.

From the above results, we can furthermore estimate
average rod length in the nematic shadow phase forz,3 and
finite l m . The exponential factor exp(dl) dominates the nem
atic density distribution and so rods in a range ofO(1/d)
below l m should contribute to the average length, giving t
estimate

^ l &N5 l mF12OS 1

d l m
D G5 l mF12OS 1

ln l m
D G .

This shows that there are strong logarithmic corrections, c
sistent with the fact that in Fig. 11 the average nematic
lengths^ l &N are still significantly belowl m . By contrast, in
the log-normal case, where the role ofd is played byg(0),
the relative corrections tôl &N are ;1/„g(0)l m…;1/ln2 lm;
even though still logarithmic, these correction terms are s
nificantly smaller.

Overall, the behavior of ‘‘wide’’ Schulz distributions with
s.1/2, i.e.,z,3, is therefore rather similar to that of log
normal distributions. We again have^ l &N→ l m for large l m ,
although now the corrections are rather more important t
in the previous case, and the rods in the nematic phase
strongly ordered ~since reff5rNl m

2 ; l m
2 diverges for l m

→`). The main difference is the fact that the cloud a
shadow densities,r and rN, now tend to distinct nonzero
limits for l m→` rather than to zero: the smaller number
long rods in the Schulz distribution is not sufficient to indu
phase separation at arbitrarily small densities.

So far, we have only covered the regimez,3. The case
z53 requires a more careful treatment; here the leading c
tribution tod calculated in Eq.~48! vanishes, and it turns ou
that d scales as 1/l m , with d l m approaching a finite limit
rather than diverging. Rods in the range;1/d; l m now con-
tribute to the nematic density distribution, which therefore
no longer dominated by the longest rods alone even forl m
→`; instead, one finds that the distribution approache
scaling function ofl / l m , with the ratio^ l &N/ l m tending to a
nontrivial limit value,1.

In the casez.3, finally, we cannot construct a sel
consistent theory based on the assumption that the nem
phase is dominated by long rods. Looking at Eq.~47!, one
sees that forz.3 negativevalues ofd would be required to
make the rhs of the equation~and thusrN) finite for l m
→`; with such negative values ofd, the assumption of
dominance of the long rods in the nematic phase is no lon
self-consistent. One might try the milder assumption that
nematic is dominated by rods that are long but still sh
compared tol m , assuming, e.g.,̂l &N; l m

a , with a,1. We
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found, however, that this always leads to contradictions. O
conclusion is therefore that forz.3, i.e.,s,1/2, the nem-
atic phase is dominated by ‘‘short’’ rods with lengths n
increasing with l m . The theoretically predicted threshol
value of s below which the cutoffl m is irrelevant and the
presence of long rods in the system does not significa
affect the phase behavior is therefores51/2.

Our numerical results~Fig. 9! show the kink in the cloud
curve, and the corresponding discontinuity in the shad
curve ats'0.48, i.e., close to but slightly below the theo
retically predicted threshold value. Comparing with Fig.
this corresponds to the fact that, coming from largez, the
discontinuous jump ing(0) occurs before the extrapolatio
of the solution in the large-z regime intersects the critica
line g(0)5z11; consistent with our theory, and extrapola
ing by eye, this intersection occurs close toz53. It therefore
appears that for finitel m the shadow curve jumps to a cutof
dependent branch, i.e., a nematic containing many long r
already slightly below the asymptotic threshold values
51/2. The value ofs where this jump occurs should the
increase towards 1/2 asl m increases.

VI. CONCLUSION

We have studied the effect of length polydispersity on
onset ofI -N phase coexistence in the Onsager theory of h
rods. To assess the possible effects of long rods, two diffe
length distributions were considered, one with a slowly d
caying, fat tail ~log-normal! and another with an exponen
tially decaying tail~Schulz!.

We showed that a length cutoffl m needs to be introduced
for fat-tailed distributions such as the log-normal to avo
divergences in the equations for the onset of phase sep
tion; the presence of such a cutoff is, of course, also ph
cally reasonable. The most striking result from our numeri
solution for the properties of the isotropic cloud and nema
shadow phases is that the cloud curves show a kink and
shadow curves corresponding discontinuities: this establis
that for fat-tailedunimodal length distributions, three-phas
I -N-N coexistence occurs. The cloud and shadow cur
show a strong dependence on the cutoff length, with b
moving rapidly to lower densities as the cutoff increases
plot of the average rod length suggested that the nem
shadow phase consists almost entirely of the longest rod
the system, i.e., those of lengthl m ; as a result, it also exhib
its very strong orientational ordering.

A theoretical analysis of the limiting behavior forl m
→` confirmed and extended these numerical results.
large cutoffs, the nematic indeed comprises only the long
rods in the parent length distribution, and is very strong
ordered. Beyond this, the theory also predicts that the de
ties of the isotropic cloud and nematic shadow phases in
vanish~with constant ratior/rN53) in the limit of infinite
cutoff. This rather surprising result means that even thou
theaveragerod length in the parent distribution is finite, th
fat tail of the distribution ensures that enough arbitrarily lo
rods are present to induce phase separation at any non
density. Even though the nematic shadow density conve
to zero for increasingl m , it does so slowly enough@rN
2-13
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A. SPERANZA AND P. SOLLICH PHYSICAL REVIEW E67, 061702 ~2003!
;(ln2 lm)/lm# for the rescaled rodvolume fractionof the nem-
atic to divergelogarithmically with l m (r1

N; ln2 lm). For any
given aspect ratio of rods, the Onsager second virial appr
mation thus eventually breaks down asl m increases, at the
point where the true volume fraction (D/L0)r1

N of the nem-
atic shadow becomes non-negligible compared to unity.

We then studied numerically the case of a Schulz dis
bution of rod lengths, for which our previous studies of t
simplified Zwanzig @18# and P2 Onsager models@27#
showed noI -N-N coexistence and no unusual behavior in t
limit of infinite rod length cutoff. The full Onsager theor
studied here revealed, however, that such effects do ind
occur: above a threshold value of the polydispersitys, the
numerical results show that the nematic density distribut
becomes exponentially divergent for large rod lengths; a
nite cutoff l m again needs to be imposed to get meaning
results. Above the threshold, the cloud and shadow cu
then depend onl m , although much more weakly than in th
log-normal case. The dominance of the long rods in the n
atic shadow phase above the threshold is also weaker
for the log-normal, with average rod lengths that are la
but significantly belowl m . At the threshold itself, a kink in
the cloud curve and a discontinuity in the shadow curve
cur, indicating that even for the ‘‘well-behaved’’ Schulz di
tribution the Onsager theory predicts a three-phaseI -N-N
phase coexistence region in the phase diagram.

We were again able to clarify these results by theoret
analysis of the limit l m→`. We found that the limiting
threshold value of the polydispersity iss51/2, correspond-
ing to an exponentz53 in the Schulz distribution, in good
agreement with the numerically calculated thresholds
small cutoffs. Above the threshold value, the theory pred
that the average nematic rod length approachesl m as in the
log-normal case, but now with larger logarithmic correctio
that explain the smaller average lengths observed num
cally. In contrast to the log-normal distribution, the cloud a
shadow curves above the threshold approachfinite limiting
values for l m→`. The physical interpretation is that th
smaller number of long rods in the Schulz distribution is n
sufficient to induce a phase separation at arbitrarily sm
densities.

It is appropriate at this stage to compare the above res
with our earlier analysis of theP2 Onsager model@26#. For
the Schulz distribution we have mentioned already that
P2 Onsager model, in contrast to the full Onsager theo
predicts no unusual effects (I -N-N coexistence and cutof
dependences! due to the presence of long rods. For the lo
normal distribution, theP2 Onsager model does exhibit
three-phaseI -N-N coexistence, with cloud curves showing
kink and shadow curves showing a corresponding disco
nuity. As in the full Onsager theory, above the kink the clo
curves are also strongly dependent on the cutoff value. H
ever, the limiting behavior of cloud and shadow curves
rather different: both the densities and the rescaled rod
ume fractions of the isotropic cloud and nematic shad
phases converge to finite, and in fact identical, limiting v
ues for a large cutoff. The nematic was also not domina
by the longest rods. In fact, the isotropic and nematic pha
06170
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differed only through a larger fraction of long rods contain
in the nematic, and the shorter rods show only a negligi
order in the nematic, with the overall orientational order p
rameter vanishing in the limit.

The above differences between the predictions of theP2
Onsager model and the full Onsager theory can be un
stood as follows. In the Onsager theory, the excluded volu
of two rods vanishes as the angle between the rods decre
to zero; this favors strongly ordered nematics such as
nematic shadow phase dominated by long rods that we fo
at the onset of phase coexistence. In theP2 Onsager model,
on the other hand, and indeed in any similar truncation of
expansion of the kernelK(u,u8) in Legendre polynomials
@27#, the excluded volume remains nonzero even for t
rods fully aligned with the nematic axis. This disfavors ne
atic phases containing a substantial number of long
strongly ordered rods. It thus makes sense that the nem
shadow phase even for the fat log-normal distribution is p
dicted to contain only a small~though enhanced as compare
to the isotropic phase! fraction of long rods.

Looking back over our results for the effects of leng
polydispersity in the full Onsager theory, it is clear that
the effects of long rods that we observe arise from the ex
nential factor exp@lg(0)# @~see Eq.~14!# which dominates the
enhancement of the nematic shadow phase density dist
tion over that of the isotropic parent phase. Any parent len
distribution with a less than exponentially decaying fat t
will therefore exhibit divergences in the nematic distributio
leading to a phase behavior similar to that for the log-norm
case. In fact, our theory in Sec. IV applies to all such f
tailed distributions. The Schulz distribution with its expone
tial tail is the borderline case, where one cannot predica
priori whether the presence of long rods will have significa
effects. We found that it does, above a threshold value of
polydispersity. To our knowledge, this is the first time th
such a threshold effect has been observed in polydisp
phase equilibria.~In the Flory-Huggins theory for homopoly
mers with chain length polydispersity, for example, whe
the enhancement factor is also a linear exponential—in ch
length—no long-rod effects are found for Schulz distrib
tions @24,25#.! Finally, for parent rod length distributions de
caying more than exponentially, e.g., as;exp(2la) with a
.1, no cutoff dependences are expected since the nem
density distribution will always be well behaved for larg
lengths. Of course, this does not mean that theI -N-N phase
coexistence is excluded for such distributions. Consider,
example, a log-normal length distribution modulated by
Gaussian factor exp@2l2/(2lm

2 )# with large l m . As we just
saw, there is then no need for an explicit cutoff. On the ot
hand, the Gaussian factor will act as an effective ‘‘soft’’ cu
off ~hence the notationl m). For large enoughl m , one thus
expects a phase behavior qualitatively similar to that d
cussed above for a ‘‘hard’’ cutoff, including theI -N-N phase
coexistence signaled by a kink in the cloud curve.

Above, we have focused exclusively on the onset of
phase coexistence; both numerically and theoretically
analysis of the phase behavior inside the coexistence re
would be far more challenging. One question one would l
to answer concerns the overall phase diagram topology.
2-14
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the one hand, the three-phaseI -N-N region could be con-
fined to a narrow density range inside theI-N coexistence
region, as is the case for theP2 Onsager model with a log
normal length distribution@26#. The alternative would be fo
the I -N-N region to extend all the way across theI -N coex-
istence region, connecting to the nematic cloud curve
being bordered by a region ofN-N coexistence; this is pre
dicted by the Onsager theory for bidisperse systems@20,23#.
Apart from a direct numerical attack on the phase coex
ence region, which for now seems out of reach, clues to
answer could be provided by an approach based on the F
lattice model of hard rods@31#. For the scenarios studied i
the past this has yielded results qualitatively similar to
Onsager theory@19,32,33#, in spite of the rather crude trea
ment of the orientational entropy. Preliminary work sho
that, in the limit of thin rods, Flory’s excess free ener
corresponds to an excluded volume term that correctly te
to zero for small rod angles. Together with the full expre
sion for the ideal part of the free energy, this can be show
give a scaling behavior in the limit of strong ordering~i.e.,
high density! very similar to that of the full Onsager theor
This version of the Flory lattice model may therefore pr
duce predictions that are more in qualitative accord with
Onsager theory than, e.g., theP2 Onsager model. It share
with the latter the desirable feature of being ‘‘truncatable
having an excess free energy that depends only on two
ments of the density distribution. This will allow the efficie
calculation of phase equilibria using the moment free-ene
method@18,27,34–37#; work in this direction is in progress

APPENDIX A: HIGH-DENSITY SCALING
FOR THE MONODISPERSE ONSAGER THEORY

We summarize here the arguments leading to the sca
solution for the angular distribution in nematic phases at h
density for the case of monodisperse rods@38#. The relevant
free energy is obtained from the polydisperse version~1! by
dropping alll integrations and settingl 51, giving

f 5r~ ln r21!1rE dũ P~u!ln P~u!

1
1

2
r2E dũ du 8̃P~u!P~u8!K~u,u8!. ~A1!

This expression needs to be minimized with respect toP(u),
subject to the normalization condition*dũ P(u)51 in our
usual notation. One obtains

P~u!5
ec(u)

E du 8̃ec(u8)

c~u!52rE du 8̃P~u8!K~u,u8!,

~A2!

which is the obvious monodisperse version of Eq.~2!. De-
fining the functionh(u)5c(0)2c(u), which obeysh(0)
50, this can be written as
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P~u!5
e2h(u)

E du 8̃e2h(u8)

, ~A3!

h~u!5rE du 8̃P~u8!@K~u,u8!2K~0,u8!#. ~A4!

Now consider the regime of high densities,r@1. From Eq.
~A4!, it is clear that for large density,h(u) becomes large.
P(u) then becomes strongly peaked aroundu50 so that the
only nonvanishing contribution to the angular integral in E
~A4! comes from the rangeu8!1. @Here and in the follow-
ing we use the symmetry ofP(u) and h(u) under u→p
2u to restrict all integrations to the rangeu50 . . .p/2.#
For u;O(1)@u8, we can then approximateK(u,u8)
.K(u,0)5(8/p)sinu, so that

h~u!.
8

p
r sinu ~A5!

to the leading order inr. This expression will not be valid
for small u, but suggests that in this regime a scaling so
tion in terms of the scaling variablet5r sinu could exist,
i.e., h(u)5h̃(t). For consistency with Eq.~A5! for u
;O(1) ~and larger), the scaling function should then hav
the leading asymptotic behaviorh̃(t)5(8/p)t for large t.
Now, written in terms ofh̃(t), Eq. ~A4! reads

h̃~ t !5

E dt8 t8

A12~ t8/r!2
e2h̃(t8)r@K~u,u8!2K~0,u8!#

E dt8 t8

A12~ t8/r!2
e2h̃(t8)

,

~A6!

where the integrals are over the range 0 . . .r and u
5arcsin(t/r), u85arcsin(t8/r). The key property that allows
one to get a density-independent equation forh̃(t) is the
scaling behavior of the kernel. For finitet andt8 and larger,
one hasu't/r, u8't8/r, and for such small~and compa-
rable! angles the kernel scaleslinearly with the angles. The
product rK(u,u8)5rK(t/r,t/r8) thus approaches a finit
limit for r→`, given by

K̃~ t,t8!5At21t82FS 2tt8

t21t82D ,

F~z!5
8

pE0

2pdw

2p
A12z cosw. ~A7!

In the same limit we can replace the factors@1
2(t8/r)2#21/2 in Eq. ~A6! by 1, and obtain the scaling equa
tion

h̃~ t !5^K̃~ t,t8!2K̃~0,t8!& t8 , ~A8!
2-15
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where the average overt8 is over the normalized probability
distribution

P̃~ t !5
1

g
t e2h̃(t), g5E dt t e2h̃(t) ~A9!

of the scaling variablet, now running over the range 0 . . .`,
since we have takenr→`. A plot of the numerical solution
of Eq. ~A8! is shown in Fig. 12 and has the expected lead
linear behavior at larget. In the high-density limit,
by the same arguments as above, the normaliza
factor for the orientational distribution~A3! becomes
*dũ exp@2h̃(r sinu)#5g/r2, with g the normalization factor
defined in Eq.~A9!. Thus,

P~u!5
r2

g
e2h̃(r sin u). ~A10!

Inserting this into expression~A1! for the free energy and
transforming everywhere fromu to t, one has

f 5r~ ln r21!12r ln r2r@^h̃~ t !& t2 ln g#

1
1

2
r^K̃~ t,t8!& t,t8 . ~A11!

From this, it follows that the osmotic pressure for large de
sities is simply

P5r
] f

]r
2 f 53r. ~A12!

It then also follows that the excess free energyf̃ @the last
term in Eq.~A11!# is just 2r. This can be seen by comparin
result ~A12! with that obtained via a different route. Sinc
P(u) is determined by minimizing the free energy, one c
evaluateP5r ] f /]r2 f by differentiating Eq.~A1!, while
holding P(u) constant. Because the excess free energ
quadratic inr for constantP(u), this givesP5r1 f̃ and
thereforef̃ 52r by comparison with Eq.~A12!, as claimed.

The result f̃ 52r is also useful for deriving an identity
that we use in the main text to show thatP53r holds in the

FIG. 12. Numerical solution of Eq.~A8! for the scaling function

h̃(t) ~solid! together with the asymptotic linear behavior at largt
~dashed!.
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nematic shadow phase at the onset of the phase separat
a system with a fat-tailed length distribution with a larg
cutoff. The excess free energy is the last term in Eq.~A11!,
thus

1

2
r^K̃~ t,t8!& t,t852r. ~A13!

From Eq.~A8! and K̃(0,t8)5(8/p)t8, we also have

^K̃~ t,t8!& t85^K̃~ t,t8!2K̃~0,t8!& t81
8

p
^t8& t85h̃~ t !1

8

p
^t& t .

~A14!

Inserting into Eq.~A13! we then obtain the desired identity

^h̃~ t !& t1
8

p
^t& t54. ~A15!

Notice that arguments very similar to those above apply a
to polydispersenematics: one again has a scaling soluti
h(u)5h̃(t) for high density, in terms of the same scalin
variable, and this again leads toP53r and f̃ 52r. van Roij
and Mulder @22# showed this explicitly for the bidispers
case.

APPENDIX B: THE APPROXIMATION OF DOMINANCE
OF THE LONG RODS

Our theory in Sec. IV for the onset of phase separation
systems with fat-tailed length distributions was based on
assumption that the nematic shadow phase is dominate
the longest rods in the system. This allowed us to repl
terms that depended weakly on rod lengthl by their values at
the cutoffl m . We now verify that this assumption is justifie
in the four cases where we have used it, namely, in E
~21!–~23! and ~25!. Let us start from the simplest of thes
Eq. ~21!. Define the angular integral

A~ l !5E dũ e2( l / l m)h(u).

The density distribution~20! in the nematic shadow phase
then rN( l )5rP(0)( l )elg(0)A( l ). The normalized nematic
length distribution PN( l )5rN( l )/rN can be written as
PN( l )5Q( l )A( l )/A( l m), if we define

Q~ l !5
r

rN
P(0)~ l !elg(0)A~ l m!.

Looking back at Eq.~21!, the assumption of long-rod domi
nance amounted to replacing the weakly varying fac
A( l )/A( l m) by A( l m)/A( l m)51, effectively substituting
Q( l ) for PN( l ). To check that this is justified, we need
consider the unapproximated Equation~20!, which after in-
tegration overl and division byrN reads

E dl Q~ l !
A~ l !

A~ l m!
51. ~B1!
2-16
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We effectively approximated this by*dl Q( l )51, so we
need to show that the contribution from the short rods to
~B1! is negligible compared to unity. We will need thel
dependence ofA( l ) to do this. Restricting the integratio
range to 0 . . .p/2 by symmetry, using the scaling form o
h(u)5h̃(t), and transforming to the scaling variablet
5reff sinu gives

A~ l !5reff
22E

0

reff
dt

t

A12~ t/reff!
2

e2( l / l m)h̃(t). ~B2!

In the limit l→0 one hasA( l )51, andA( l ) will remain of
this order while the exponential exp@2(l/lm)h̃(t)# is close to
unity even fort5reff . Sincereff is large andh̃(t) linear in t
for large arguments, this gives the criterion (l / l m)reff;1 or
l; l m /reff . Up to this value ofl, we can approximateA( l )
'1. For larger l, the factor exp@2(l/lm)h̃(reff)# is small
enough for the integral to be dominated by valuest!reff , so
that we can set@12(t/reff)

2#1/2'1 and extend the uppe
limit of the t integral to infinity. The bulk of the integral stil
comes from values oft@1, however, whereh̃(t) is linear,
and carrying out integral~B2! with this approximation gives
the scalingA( l );reff

22( l m / l )2. As l increases, the range oft
values contributing to the integral reduces, and eventu
the quadratic behavior ofh̃(t) neart50 leads to corrections
to this scaling. Even atl 5 l m , however, these effects ar
relatively small, sinceh̃(t) is approximately linear even
down to t'1 ~see Fig. 12!; we therefore neglect them to
first approximation. In summary, we thus have the scal
A( l );1 for l ! l m /reff , and A( l );reff

22( l m / l )2 for l
@ l m /reff . A sample plot ofA( l ) evaluated numerically, to
gether with our approximation, is given in Fig. 13. It follow
from the above results that the factorA( l )/A( l m) in Eq. ~B1!
is no larger than;( l m / l )2, even for very smalll. The con-
tribution to thel integral from rod lengthsl of the order of
unity is therefore bounded by;*dl l m

2 l 22Q( l ). For l
5O(1), we can set thefactor exp@lg(0)# in Q( l ) to 1, since
g(0) is small~for large l m); the factorr/rN is also asymp-
totically just an unimportant constant. The short-rod con

FIG. 13. Plot of A( l ) against l for l m5500 and reff

56500 (' l m ln2 lm). Notice thegreff
22( l m / l )2 scaling at intermedi-

ate values ofl and the quasiconstant behavior at smalll. At l
; l m , corrections to the (l m / l )2 behavior are visible.
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bution to Eq. ~B1! is thus of the order
;A( l m) l m

2 *dlP(0)( l ) l 22 or, if we extend the integral up to
l 5`, A( l m) l m

2 ^ l 22& with the average taken over the pare
distribution. Now A( l m);reff

22 @more precisely, A( l m)
5greff

22 ; see before Eq.~A10!#, so this contribution scales a
( l m /reff)

2;( l mrN)22. For the log-normal length distribu
tion, rN;(ln2 lm)/ lm, and so the short-rod contributio
;1/ln4 lm to Eq. ~B1! does indeed become negligible fo
large l m when compared to the long-rod contribution of 1

Next, consider the approximated osmotic pressure eq
tion ~25!. We need to show that the contribution of the sh
rods to thel integral in Eq.~24! is negligible compared to the
long-rod part, which we evaluated to be 2rN. Dividing by rN

to have a quantity to which the long rods contribute a va
of the order of unity, and discarding factors that are const
for large l m , we have to consider the integral

E dl Q~ l !
l

l m

A~ l !

A~ l m! H l m@g~0!2c1r#

2
1

A~ l !E dũe2( l / l m)h(u)h~u!J .

The first term in the curly brackets is easy: thel integral is
proportional to *dl Q( l )( l / l m)@A( l )/A( l m)#. Comparing
with the integral*dl Q( l )@A( l )/A( l m)# treated above, the
short-rod contribution here is suppressed by an additio
factor of l / l m , and so definitely negligible. The second term
on the other hand, is of the form

E dl Q~ l !l
A~ l !

A~ l m!

A8~ l !

A~ l !
5E dl Q~ l !l

A~ l !

A~ l m!

d

dl
ln A~ l !.

As we saw above,A( l ) varies at most as a power law withl,
so that (d/dl)ln A(l);1/l and we are again led back to th
integral *dl Q( l )@A( l )/A( l m)# for which we showed the
dominance of the long rods above.@This argument applies
even in the small-l rangel , l m /reff , whereA( l ) is approxi-
mately constant and (d/dl)ln A(l) therefore even smaller.#

In Eq. ~18!, which we approximated by Eq.~22!, we have
a similar l integral that turned out to scale as 1/l m @see
Eq. ~32!#. Multiplying then by l m to again have a long-rod
contribution of the order of unity, and usingr l l m
5(r/rN)( l / l m)reff;( l / l m)reff , we need to consider the in
tegral

E dl Q~ l !
l

l m

A~ l !

A~ l m!
E dũ

8

p
reff sinu

e2( l / l m)h̃(reff sin u)

A~ l !
.

~B3!

As before, the angular integral will be dominated~with the
exception of very small lengthsl , l m /reff ; see below! by
the range wheret5reff sinu is large. In this range,h̃(t)
'(8/p)t is linear to a good approximation, so that the ang
lar integral can be written as

E dũ h̃~reff sinu!
e2( l / l m)h̃(reff sin u)

A~ l !
5

l m

A~ l !
.

2-17
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The overall integral ~B3! thus becomes
*dl Q( l ) l @A( l )/A( l m)#(d/dl)ln A(l) for which the long-rod
dominance has been shown already. The contribution f
very smalll values,l , l m /reff needs to be treated separate
Here, we use the fact that the angular integral in Eq.~B3! can
be viewed as an average of (8/p)reff sinu over a normalized
distribution, giving a result of at most;reff . Using also
that A( l ).1 in this regime, one needs to integra
reffQ( l )( l / l m)@1/A( l m)# over the rangel 50 . . . (l m /reff);
the integrand is bounded there byQ( l )/A( l m);P(0)( l ) and
gives a vanishing integral, since the upper limit of the in
gration range,l m /reff51/(rNl m);1/ln2 lm, vanishes in the
limit l m→`.

Finally, we need to analyze Eq.~19!, which we approxi-
mated by Eq.~23!. Let us rewrite the rhs of Eq.~19! as

reff

A~ l m!
E du 8̃@K~u,u8!2K~0,u8!#E dl Q~ l !

l

l m
e2( l / l m)h(u8).

One can view this as an average of the term in square br
ets over a~unnormalized! distribution overu8. We thus need
to show that the short-rod contribution to

E dl Q~ l !
l

l m
e2( l / l m)h(u8) ~B4!

is negligible compared to the long-rod contribution, at le
for the values ofu8 that are in the bulk of this distribution
~rather than the tail!. When evaluating the long-rod contribu
tion it is not a priori clear that one can treat the exponent
factor exp@2(l/lm)h(u8)# as weakly varying withl. We will
see below that this can nevertheless be justified, so tha
long-rod contribution is simplye2h(u8) as used in Eq.~23!.
The short-rod contribution to Eq.~B4! can be estimated
by again approximating exp@lg(0)#'1 and bounding
exp@2(l/lm)h(u8)#,1. This yields a contribution of at mos
*dl P(0)( l )( l / l m)A( l m),^ l &A( l m)/ l m with the average
again taken overP(0)( l ) and thus giving unity. This is
comparable with the long-rod term exp@2h(u8)# only for
values of u8 such that e2h(u8);A( l m)/ l m;1/l mreff

2

;O( l m
23 ln24 lm). This means that the corrections due to t

short-rod integral become important only where the angu
a

le
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distribution has already decayed to;1/l m
3 ~up to logarithmic

terms! of its value atu850, i.e., far in the tails of theu8
distribution. We can now also justify neglecting thel depen-
dence of the term exp@2(l/lm)h(u8)#: at the onset of correc
tions from the short rods one hash(u8); ln lm. Up to this
point, i.e., in the bulk of the distribution, the ratioh(u8)/ l m
is at most;(ln lm)/lm. In the overall exponential factor in
Eq. ~B4!, exp$l@g(0)2h(u8)/lm#%, this term is therefore still
negligible compared tog(0);(ln2l m)/lm, and the resultingl
dependence can be ignored.

APPENDIX C: THE DOMINANCE OF LONG RODS
FOR THE SCHULZ DISTRIBUTION

In this appendix we outline briefly how, for the Schu
distribution~43!, one can establish that the assumption of
long rods being dominant in the nematic shadow phas
again justified~for z,3). As an example we discuss E
~21!, which is obtained from Eq.~20! if the long rods domi-
nate.

As we saw in Appendix B, the scaling of the angul
integral A( l )5*dũ e2( l / l m)h(u) is reff

22( l m / l )2 for l
. l m /reff , andA( l )'1 for smallerl. Inserting this into the
nematic density distribution ~20!, rN( l )
5rP(0)( l )elg(0)A( l ), usingreff5rNl m

2 and exploiting thatr
and rN approach constant limits forl m→`, one hasrN( l )
; l m

22l z22ed l for l . l m /reff;1/l m , and rN( l ); l zed l for
smaller l. We want to show again that the integral ofrN( l )
over the short rods~with lengthsl of order unity! is negli-
gible compared to the long-rod contribution@which, since
rN5O(1), is of theorder of unity#. In the short rods regime
we can approximateed l.1. The integration ofrN( l ) over
the range 0. . . 1/l m then gives just;O( l m

2z21) which is
negligible compared to unity forz>0. The contribution
from the rangel .1/l m can be bounded by extending th
integration not just over the short rods, but in fact up tol m ,
giving ; l m

22( l m
z212 l m

12z)5( l m
z232 l m

2z21) which is again
negligible compared to unity as long asz,3. ~For z51, the
integral has a logarithmic correction, giving; l m

22ln lm, but
is still negligible.! As in the log-normal case, the integra
over the nematic density distribution is therefore domina
by the longest rods, justifying Eq.~21!.
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